GELL CULTURE - THE BASICS

Your Research - Our Solution

Fisher
Scientific

What is cell culture?

Cell culture refers to the removal of cells from an animal or plant and their subsequent growth in a favorable artificial environment. Cells can be removed from:
tissue directly and disaggregated by enzymatic or mechanical means before cultivation, or derived from a cell line or cell strain that has already been established.

What do we need?

- A substrate or medium that supplies the essential nutrients (amino acids, carbohydrates, vitamins, minerals)
- Growth factors and supplements
- Hormones
- Gases $\left(\mathrm{O}_{2}, \mathrm{CO}_{2}\right)$
- A regulated physico-chemical environment (pH, osmotic pressure, temperature)

How to choose your media

The choice of cell culture media is extremely important, and significantly affects the success of cell culture experiments ${ }^{[1]}$. The selection of the media depends on the type of cells to be cultured and also the purpose of the culture and resources available in the laboratory ${ }^{[2,3]}$. Different cell types have highly specific growth requirements, therefore, the most suitable media for each cell type must be determined experimentally ${ }^{44,56]}$. In general, it's always good to start with MEM for adherent cells and RPMI-1640 for suspension cells.

| Media Type | Examples | Uses |
| :--- | :--- | :--- | :--- |
| Basal media | MEM DMEM | Primary and diploid culture |
| Complex media | RPMI-1640, IMDM | Supports wide range of mammalian
 cells |

${ }^{[1]}$ Weller T, Wheeldon S. The cultivation in vitro of cells derived from adult Schistosoma mansoni. I. Methodology; criteria for evaluation of cultures; and development of media. Am J Trop Med Hyg. 1982;31:335-48
${ }^{[2]}$ Yang H. Selection of culture media for human and rabbit corneal epithelia. Zhonghua Yan Ke Za Zhi. 1991;27:351-3
${ }^{[3]}$ Clifford W, Anellis A, Ross E. Evaluation of media, time and temperature of incubation, and method of enumeration of several strains of Clostridium perfringens spores. Appl Microbiol. 1974;27:784-92
${ }^{[4]}$ Sato JD, Hayashi I, Hayashi J, Hoshi H, Kawamoto T, McKeehan WL et al. Specific cell types and their requirements. In: Davis JM, editor. Basic Cell Culture: A Practical Approach. Oxford: Oxford University Press; 1994.
${ }^{[5]}$ Schumpp B, Schlaeger E. Optimization of culture conditions for high cell density proliferation of HL-60 human promyelocytic leukemia cells. J Cell Sci. 1990;97:63947
${ }^{[6]}$ McKeehan W, Barnes D, Reid L, Stanbridge E, Murakami H, Sato G. Frontiers in mammalian cell culture. In Vitro Cell Dev Biol. 1990;26:9-23

How to choose your flask

Flask shapes

Low profile flasks have reduced height for incubator space savings. The corner neck gives direct access to the flxask corner.

Triangular and modified triangular flasks offer good pipet and cell scraper access to the corners. The wider base provides added stability.

Rectangular flasks have a ramp from the bottom to the canted neck for easier pouring and pipet access. Most canted neck flasks also have an antitip skirt to enhance stability.

Angled neck and traditional straight neck flasks utilise the entire bottom area for cell growth. Their design saves on space and reduces medium sloshing into the neck.

U-shape T-75 flasks have rounded shoulders for an easier grip and better access when removing or tightening the cap. The new ergonomic shape also reduces the number of corners, improves cell scraping, and allows the use of a larger pipet.

Flask neck styles

Straight neck flasks are ideal for larger volumes since the design reduces medium sloshing into the cap.

Canted neck flasks allow easier pouring and improved access to the flask for pipetting or scraping. The canted neck design was a Corning innovation that first appeared in 1974.

Angled neck improves pipet access and reduces medium sloshing into the neck. This patented design was a Corning innovation that first appeared in 1988.

Flask cap styles

Plug seal caps feature one-piece linerless construction and are designed for use in closed systems, providing a liquid- and gas-tight seal. When loosened, this cap can also be used in open systems. This cap design was a Corning innovation that first appeared in 1974.

Phenolic style caps are designed (when loosened) for use in open systems requiring gas exchange. With te caps slightly loosened, gas is exchanged between the environments inside and outside of the flask.

- Vent caps contain a $0.2 \mu \mathrm{~m}$ pore nonwettable membrane sealed to the cap, providing consistent, sterile gas exchange while minimizing the risk of contamination. These caps are highly recommended for use in all CO_{2} incubators, especially for long-term use. The vent cap was a Corning innovation that first appeared in 1988.

CORNING

MEM (Minimum Essential Medium)

	Alt. No				
Contains	10-009	10-010	15-010	15-015	17-305
L-Glutamine	x	x			
Phenol Red	x	x	x	X	
Calcium and magnesium	x	x	x		x
Sodium bicarbonate	x	x	x	x	X
Non-essential amino acids	x				
Sodium pyruvate	x				
Earle's salts	x	x	x	x	x
Cat. No Alt. No	Description			Size	Pack qty
15313531 10-010-CVR	[+] Earle's salts, L-glutamine			500 mL	6
15363591 10-010-CMR	[+] Earle's salts, L-glutamine			1 L	6
15333551 15-010-CVR	[+] Earle's salts; [-] L-glutamine			500 mL	6
15383611 15-010-CMR	[+] Earle's salts; [-] L-glutamine			1L	6
15303571 17-305-CVR	[+] Earle's salts; [-] L-glutamine, Phenol Red			500 mL	6
15363551 15-015-CVR	[-] L-glutamine, calcium, magnesium			500 mL	6

CORNING

MEM (Minimum Essential Medium) Alpha medium

	Alt. No	
Contains	$10-022$	$15-012$
L-Glutamine	x	
Phenol red	x	x
Nucleosides	x	
Sodium pyruvate	x	x
Sodium bicarbonate	x	x

Cat. No	Alt. No	Description	Size	Pack qty
$\mathbf{1 5 3 6 3 5 3 1}$	10-022-CVR	[+] Earle's salts, ribonucleosides, deoxyribonucleosides, L-glutamine	500 mL	6
$\mathbf{1 5 3 4 3 5 5 1}$	15-012-CVR	[+] Earle's salts; [-] ribonucleosides, deoxyribonucleosides, L-glutamine	500 mL	6

CORNING

Improved MEM (Richter's Modification)

Cat. No	Alt. No	Description	Size	Pack qty
$\mathbf{1 5 3 7 3 5 3 1}$	10-024-CVR	$[+]$ L-Glutamine	500 mL	6
$\mathbf{1 5 3 9 3 5 3 1}$	$10-026-C V R$	[+] L-Glutamine; [-] Phenol Red	500 mL	6

CORNING

Corning U-shape cell culture flasks $\quad 1$

Corning's enhanced T-75 flask features a U-shaped design, which improves usability while maintaining the same environment for cell growth as previous designs. The U-shaped T-75 flask includes specific design advances, such as rounded shoulders, which allow for an easier grip and for better access when removing or tightening the cap. The new ergonomic shape also reduces the number of corners, improves cell scraping, and provides the option to use a larger pipette (up to 50 mL).

- Manufactured from optically clear virgin polystyrene
- Printed with lot numbers for ease in traceability
- 100% integrity tested
- Sterilised by gamma irradiation and certified nonpyrogenic

Cat. No	Alt. No	Description	Pack qty
$\mathbf{1 5 3 7 0 5 9 1}$	174901	$75 \mathrm{~cm}^{2}$, Tissue culture treated, phenolic-style cap	100
$\mathbf{1 5 3 6 0 5 9 1}$	174900	$75 \mathrm{~cm}^{2}$, Tissue culture treated, plug seal cap	100
$\mathbf{1 5 3 5 0 5 9 1}$	174899	$75 \mathrm{~cm}^{2}$, Tissue culture treated, vented cap	100
$\mathbf{1 5 3 8 0 5 9 1}$	174898	$75 \mathrm{~cm}^{2}$, Not treated, vented cap	100

CORNING

Corning multiple well plates, sterile

- Tissue culture-treated for optimum cell attachment and growth
- Optically clear plates compatible with most automatic diluters, readers, and pipettors
- Raised well rims, lid rings, and recessed areas prevent cross-contamination and reduce evaporation
- Uniform wall thickness ensures distortion-free well bottoms
- Well positions are labeled with alphanumeric markings
- Gamma radiation sterilised and certified nonpyrogenic

Cat. No	Alt. No	Description	Pack qaty	
$\mathbf{1 0 5 7 8 9 1 1}$	2	3516	6-well plate, 1/tray	50
$\mathbf{1 0 1 4 6 8 1 0}$	3506	6-well plate, 5/bag	100	
$\mathbf{1 0 2 5 3 0 4 1}$	3	3513	12-well plate, 1/tray	50
$\mathbf{1 0 7 3 2 5 5 2}$	3524	24-well plate, 1/tray	100	
$\mathbf{1 0 3 7 7 8 4 1}$	3527	24-well plate, 5/bag	100	
$\mathbf{1 0 3 8 0 9 3 2}$	3526	24-well plate, 1/tray	50	
$\mathbf{1 0 0 6 5 3 7 0}$	3548	48-well plate, 1/tray	100	
$\mathbf{1 0 6 9 5 9 5 1}$	4	3596	96-well plate, 1/tray	50

DMEM (Dulbecco's Modification of Eagle's Medium)

	Alt. No												
Contains	10-101	10-102	10-013	10-014	10-017	10-027	15-013	15-017	15-018	17-204	17-205	17-206	17-207
L-Glutamine			x	x	x	\times							
Sodium pyruvate			x	x			x		x	x	x	x	
Phenol Red			x	x	x	x	x	x	x	x		x	x
L-Cystine			x	x	x	x	x	x	x		x	\times	x
L-Methionine			x	x	x	x	x	x	x	x	x		x
Phosphate						\times			\times				
HEPES				x									
Low glucose			x		x	x	x	x	x	x	x	x	
High glucose	x	x											
Glutagro ${ }^{\text {TM }}$													

I
A variation of MEM, called Dulbecco's Modified
I
Eagle's Minimal (DMEM), (Dulbecco/Vogt modified
I
agle's Minimal Essential Medium), contains
approximately four times as much of the vitamins
and amino acids present in the original formula and
two to four times as much glucose. Additionally, it

Cat. No	Alt. No	Description	Size	Pack qty
\| 15393541	10-101-CVR	[+] Corning glutagro ${ }^{\text {tw }}$ supplement, $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate, phenol red	500 mL	6
15333611	10-102-CVR	$[+]$ Corning glutagro™ supplement, $4.5 \mathrm{~g} / \mathrm{L}$ glucose, Phenol Red; [-] sodium pyruvate	500 mL	6
15323531	10-013-CVR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, L-glutamine, sodium pyruvate	500mL	6
15373591	10-013-CMR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, L-glutamine, sodium pyruvate	1 L	6
15393591	10-013-LXR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, L-glutamine, sodium pyruvate	10L	1
15383591	10-013-LBR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, L-glutamine, sodium pyruvate	20L	1
15333531	10-014-CVR	[+] $1.0 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate, L-glutamine	500 mL	6
15303601	10-014-CMR	[+] $1.0 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate, L-glutamine	1 L	6
15353531	10-017-CVR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, L-glutamine; [-] sodium pyruvate	500 mL	6
15323601	10-017-CMR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, L-glutamine; [-] sodium pyruvate	1 L	6
15353551	15-013-CVR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate; [] L-glutamine	500 mL	6
15393611	15-013-CMR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate; [-] L-glutamine	1L	6
15313621	15-013-LXR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate; [-] L-glutamine	10L	1
I 15303621	15-013-LBR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate; [-] L-glutamine	20L	1
15383551	15-017-CVR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose; [[- L-glutamine, sodium pyruvate	500 mL	6
I 15323621	15-017-CMR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose; [[- L-glutamine, sodium pyruvate	1 L	6
I 15393551	15-018-CVR	[$+\mathrm{l} 4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate, 25 mM HEPES; [-] L-glutamine	500 mL	6
15333621	15-018-CMR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate, 25 mM HEPES; [-] L-glutamine	1L	6
15373561	17-204-CIR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate; [-] L-glutamine, L-methionine, L-cystine	100 mL	6
15383561	17-205-CVR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate; [-] L-glutamine, phenol red	100mL	6
15383621	17-206-CIR	[+] $4.5 \mathrm{~g} / \mathrm{L}$ glucose, sodium pyruvate; [-] L-glutamine, phosphate	100 mL	6
15393561	17-207-CVR	[-] Glucose, L-glutamine, sodium pyruvate	500 mL	6

CORNING

IDMEM (Iscove's Modification of DMEM)

	Alt. No		
Contains	10-016	15-016	
L-Glutamine	x		
Sodium pyruvate	x	x	
Phenol Red	x	x	
Sodium bicarbonate	x	x	
Cat. No Alt. No	Description	Size	Pack qty
15343531 10-016-CVR	[+] L-Glutamine	500 mL	6
15313601 10-016-CMR	[+] L-Glutamine and 25 mM HEPES; [-] α-thioglycerol, β-mercaptoethano	1 L	6
15373551 15-016-CVR	[+] 25mM HEPES; [-] α-thioglycerol, β-mercaptoethanol, L-Glutamine	500 mL	6

Thermo
 SCIENTIFIC

Thermo Scientific ${ }^{\text {TM }}$ UpCell cultureware

The UpCell surface is designed to respond to changes in temperature. It releases adherent cells by a simple reduction of the temperature of the cell culture. Products with the UpCell surface include Thermo Scientific Nunc MicroWell plates, multidishes and dishes.

Cat. No	Alt. No	Description	Pack qaty
Multiwell and assay plates			
$\mathbf{1 0 5 4 2 2 0 4}$	174901	6 well	6
$\mathbf{1 0 2 8 8 1 4 3}$	174900	12 well	6
$\mathbf{1 0 5 3 2 2 0 4}$	174899	24 well	6
$\mathbf{1 0 6 1 6 2 3 4}$	174898	48 well	6
$\mathbf{1 0 6 0 9 1 1 4}$	174897	96 microwell plate with flat bottom	8
Culture dishes			
$\mathbf{1 0 4 6 3 6 6 5}$	174904	35 mm	30
$\mathbf{1 0 5 9 2 9 5 4}$	174903	60 mm	30
$\mathbf{1 0 3 9 8 9 6 3}$	174906	60 mm with grid	30
$\mathbf{1 0 0 7 3 8 3 3}$	174902	100 mm	6
$\mathbf{1 0 1 6 5 6 1 3}$	174905	100 mm with grid	6

I Ham's F-10 medium is a classical media designed by Ham in 1962 to support the growth of mouse and human diploid cells in 1962. Ham's F-12, an improved product, has been used for the growth of primary rat hepatocytes and rat prostate epithelial cells. A clonal toxicity assay using CHO cells has also been reported with Ham's F-12 as the medium of choice. I

- - -

Ham, R.G. 1984, Formulation of basal nutrient media. In Cell Culture Methods for Cell Biology, Vol. 1 (D. W. Barnes, D. A. Sirbasku, and G. H. Sato, eds.) pp. 3-21. Alan R. Liss, New York

Cat. No	Alt. No	Description	Size	Pack qty
15373541	10-090-CVR	[+] L-Glutamine	500mL	6
15313611	10-090-CMR	[+] L-Glutamine	1 L	6
15383541	10-092-CVR	[+] L-Glutamine, 15mM HEPES	500 mL	6
15323611	10-092-CMR	[+] L-glutamine, 15mM HEPES	1 L	6
15353561	16-405-CVR	[+] L-Glutamine; [-] Phenol Red	500 mL	6
15323561	15-090-CVR	[+] L-Glutamine	500 mL	6
15363621	15-090-CMR	[-] L-Glutamine	1 L	6
15303551	10-103-CVR	[+] Corning glutagro ${ }^{\text {TM }}$ supplement	500 mL	6

CORNING

RPMI 1640

			Alt. No						
Contains	$10-040$	$10-041$	$10-043$	$10-104$	$15-040$	$15-041$	$17-104$	$17-105$	
L-Glutamine	x	x	x						
Phenol Red	x	x	x	x	x	x	x		
HEPES		x				x			
L-Cystine/L-Methionine	x	x	x	x	x	x		x	
Sodium bicarbonate	x	x	x	x	x	x	x	x	
Glutagro $^{\text {TM }}$				x					

Cat. No	Alt. No	Description	Size	Pack qty
15343601	10-040-CMR	[+] L-Glutamine	1L	6
15303541	10-040-CVR	[+] L-Glutamine	500 mL	6
15353601	10-040-LBR	[+] L-Glutamine	20L	6
15363601	10-040-LXR	[+] L-Glutamine	10L	6
15373601	10-041-CMR	[+] L-Glutamine and 25mM HEPES	1L	6
15313541	10-041-CVR	[+] L-Glutamine and 25mM HEPES	500 mL	6
15323541	10-043-CVR	[+] L-Glutamine; [-] glucose	500 mL	6
15313551	10-104-CVR	$[+]$ Corning ${ }^{\text {TM }}$ glutagro ${ }^{\text {TM }}$ supplement, phenol red	500 mL	6
15343621	15-040-CMR	[-] L-Glutamine	1 L	6
15303561	15-040-CVR	[-] L-Glutamine	500 mL	6
15353621	15-040-LBR	[-] L-Glutamine	20 L	6
15313561	15-041-CVR	[+] 25mM HEPES; [-] L-Glutamine	500 mL	6
15373621	17-104-CIR	[-] L-Glutamine, L-Methionine, L-Cystine	100 mL	6
15363561	17-105-CVR	[-] L-Glutamine, Phenol Red	500 mL	6

Other classical media

Cat. No	Alt. No	Description	Contains	Size	Pack aty
15383531	10-025-CVR	F-12K Nutrient Mixture (Kaighn's Modification)	[+] L-Glutamine	500 mL	6
15333541	10-045-CVR	Leibovitz's L-15 (Modification)	[+] L-Glutamine	500 mL	6
15383601	10-050-CVR	McCoy's 5A (lwaketa and Grace Modification)	[+] L-Glutamine, Phenol Red, sodium bicarbonate	500 mL	6
15393601	10-051-CIR	McCoy's 5A (Iwaketa and Grace Modification)	[+] L-Glutamine, Phenol Red, sodium bicarbonate, 25mM HEPES	100 mL	6
15343541	10-060-CVR	Medium 199 (Modification)	[+] Earle's salts, L-Glutamine, Phenol Red, sodium bicarbonate	500 mL	6
15353541	10-070-CVR	Ham's F-10 Medium	[+] L-Glutamine	500 mL	6
15363541	10-080-CVR	Ham's F-12 Medium	[+] L-Glutamine	500 mL	6
15333561	15-100-CVR	MCDB 131, 1 x	[-] L-Glutamine	500 mL	6
15343561	15-110-CVR	CMRL 1066	[-] L-Glutamine	500 mL	6

CORNING

Other cell culture reagents and supplements

Category	Cat. No	Alt. No	Description	Size	Pack qty
	15323581	25-000-CIR	Sodium pyruvate, 100 mM solution with $8.5 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}$	100mL	6
Amino acids and vitamins	15323641	25-020-CIR	MEM vitamins, 100x	100mL	6
Amino acids and vitamins	15333581	25-025-CIR	MEM non-essential amino acids, 100x	100 mL	6
Amino acids and vitamins	15343581	25-030-CIR	MEM amino acids, [-] L-glutamine, 50x	100 mL	6
Antibiotics and antimycotics	15313681	30-240-CR	Hygromycin B solution	10mL	1
Antibiotics and antimycotics	15313671	$30-001-\mathrm{Cl}$	Penicillin-Streptomycin solution, 50x	100 mL	6
Antibiotics and antimycotics	15323671	$30-002-\mathrm{Cl}$	Penicillin-Streptomycin solution, 100x	100 mL	6
Buffers	15353581	$25-035-\mathrm{Cl}$	Sodium bicarbonate, 7.5\% solution	100 mL	6
Buffers	15323661	$25-060-\mathrm{Cl}$	HEPES, 1M solution ($238.3 \mathrm{mg} / \mathrm{mL}$)	100mL	6
Enzymatic cell dissociation agents	15393641	$25-050-\mathrm{Cl}$	0.25\% Trypsin in HBSS; [-] calcium, magnesium	100 mL	6
Enzymatic cell dissociation agents	15303651	25-051-Cl	0.05\% Trypsin/0.53mM EDTA in HBSS; [+] sodium bicarbonate, [-] calcium, magnesium	100 mL	6
Enzymatic cell dissociation agents	15313651	25-052-Cl	0.05\% Trypsin/0.53mM EDTA in HBSS; [] sodium bicarbonate, calcium, magnesium	100 mL	6
Enzymatic cell dissociation agents	15323651	25-052-CV	0.05\% Trypsin/0.53mM EDTA in HBSS; [-] sodium bicarbonate, calcium, magnesium	500 mL	6
Enzymatic cell dissociation agents	15333651	$25-053-\mathrm{Cl}$	0.25\% Trypsin/2.21mM EDTA in HBSS; [-] sodium bicarbonate, calcium, magnesium	100mL	6
Enzymatic cell dissociation agents	15343651	$25-054-\mathrm{Cl}$	2.5\% Trypsin in HBSS; [-] calcium, magnesium, phenol red	100 mL	6
Hybridoma reagents	15373641	$25-046-\mathrm{Cl}$	HAT (Hypoxanthine, Aminopterin, Thymidine), 50x	100 mL	1
Hybridoma reagents	15383641	25-047-Cl	HT (Hypoxanthine, Thymidine), 50x	100 mL	1
Miscellaneous reagents	15303671	25-950-CQC	DMSO (dimethyl sulfoxide)	250 mL	1
Miscellaneous reagents	15363581	25-037-CIR	45\% Glucose solution	100 mL	1
Miscellaneous reagents	15393661	$25-900-\mathrm{Cl}$	Trypan Blue solution, 0.4% (w/v) in PBS, pH7.5 ± 0.5	100 mL	1

CORNING

Corning CellBIND ${ }^{\text {TM }}$ surface cultureware

Optimal growth - Corning CellBINDTM surface-treated gas permeable polystyrene for superior cell attachment and growth
Increase cell yield - ten-fold higher cell yield increases productivity and capacity
Time and space savings - reduce processing time and incubator storage space by handling one flask compared to 10 traditional $175 \mathrm{~cm}^{2}$ flasks
Two extra caps (single, double bagged) per case now included

Cat. No	Alt. No	Description	Pack qty
Multiwell and assay plates			
10234832	3335	6 well plate, clear, sterile, with lid	50
10739864	3336	12 well plate, clear, sterile, with lid	50
10224882	3337	24 well plate, clear, sterile, with lid	50
10251443	3338	48 well plate, clear, sterile, with lid	50
10510733	3300	96 well plate, clear bottom, sterile, with lid	50
Flasks and hyperflasks			
10194302 3	3289	$25 \mathrm{~cm}^{2}$ with vented cap, sterile	200
10327342	3290	$75 \mathrm{~cm}^{2}$ with vented cap, sterile	100
10787994	3291	$150 \mathrm{~cm}^{2}$ with vented cap, sterile	50
10664553	3292	$175 \mathrm{~cm}^{2}$ with vented cap, sterile	50
10103642 2	3293	$225 \mathrm{~cm}^{2}$ with vented cap, sterile	25
10031352	3298	$175 \mathrm{~cm}^{2}$ with phenolic cap, sterile	50
$10222613 \square 1$	10024	HYPERFlask ${ }^{\text {TM }}$, treated, sterile, bar coded, double bagged	24
10281845	10030	HYPERFlask ${ }^{\top M} M$, treated, sterile, bar coded, individually wrapped	4
10343305	10020	HYPERFlask ${ }^{\top M}$ M, treated, sterile, bar coded, double bagged	4
10569765	10034	HYPERFlask ${ }^{\top M} M$, treated, sterile, bar coded, double bagged	24
Culture dishes			
10757804	3294	35 mm	210
10665893	3295	60 mm	126
10581873	3296	100mm	40

CORNING

High content screening microplates with glass bottom

High optical quality, glass bottom, black microplates are ideal for performing high content cellbased assays using imaging systems. The glass bottom provides a flat and optically clear surface that reduces autofocus time, increases throughput, and is ideal for cell growth.

- High optical quality and scratch resistant glass
- Glass bottom thickness of $200 \mu \mathrm{~m}$ and ultra-clear film with $127 \mu \mathrm{~m}$ thickness are well suited for imaging microscopy
- Bottom flatness $<50 \mu \mathrm{~m}$ to ensure planarity for imaging devices
- Low background fluorescence and minimal cross-talk provides the highest possible optical quality for cell-based assays
- Half area 96 well microplate reduces reagent consumption

Cat. No	Alt. No	Description	Treatment	Bottom	Pack qty
Thin glass bottom					
$\mathbf{1 5 3 8 9 8 6 0}$	4582	96 well half area	Collagen	Glass	10
$\mathbf{1 5 3 0 9 8 7 0}$	4584	96 well half area	Fibronection	Glass	10
$\mathbf{1 5 3 3 9 8 7 0}$	4586	96 well half area	Poly-D-Lysine	Glass	10
$\mathbf{1 5 3 9 9 8 6 0}$	4583	384 well	Collagen	Glass	10
$\mathbf{1 5 3 2 9 8 7 0}$	4585	384 well	Fibronection	Glass	10
$\mathbf{1 5 3 5 9 8 7 0}$	4587	384 well	Poly-D-Lysine	Glass	10
Ultra-thin glass bottom					
$\mathbf{1 5 3 6 8 2 7 1}$	4680	96 well half area	TC-treated	Film clear	16
$\mathbf{1 5 3 8 8 2 7 1}$	4681	384 well	TC-treated	Film clear	20

CORNING

BioCoat ${ }^{\text {TM }}$ Poly-D-Lysine and Poly-L-Lysine cellware

Poly-D-Lysine (PDL) and Poly-L-Lysine (PLL) are synthetic compounds that enhance cell adhesion and protein absorption by altering surface charges on the culture substrate. In addition to promoting cell adhesion, Poly-Lysine surface treatments support neurite outgrowth and improve the survival of many central nervous system (CNS) primary cells in culture. As PDL and PLL are synthetic molecules, they do not stimulate biological activity in the cells cultured on them, and they do not introduce impurities carried by natural polymers.

BioCoat ${ }^{\text {TM }}$ Poly-D-Lysine cellware

Description	Pack qty	Cat. No.	Alt. No	Pack qty	Cat. No.	Alt. No	Pack qty	Cat. No.	Alt. No
Multiwell and assay plates									
6 well	5	10607271	354413	50	10674242	356413		-	-
12 well	5	10533051	354470	50	10672502	356470	-	-	-
24 well	5	10411321	354414	50	10554461	356414	-	-	-
48 well	5	10246201	354509	50	10103721	356509	-	-	-
96 well clear	5	10431701	354461	50	10182141	356461	80	10224392	356690
96 well black/clear	5	10043830	354640	50	10140403	356640	80	10254342	356692
96 well white/clear	5	10379320	354651	50	10202753	356651	80	10192822	356693
96 well white	5	10657071	354620	50	10515631	356620	80	10090712	356691
384 well clear	5	10145860	354662	50	10385911	356662	80	10613683	356695
384 well black/clear	5	10093860	354663	50	10345961	356663	80	10576293	356697
384 well black/clear small volume	5	10736503	354396	50	10262323	356396	-	-	-
384 well white/clear	5	10166000	354660	50	10488842	356660	80	10725203	356694
384 well white	5	10627841	354661	50	10274561	356661	80	10747894	356696
1536 well black/clear	5	11947211	354022	50	13416829	356022	-	-	-

BioCoat ${ }^{\text {TM }}$ Poly-D-Lysine cellware

Cat. No	Alt. No	Description	Pack qty
Culture dishes			
$\mathbf{1 0 3 9 9 3 2 0}$	354467	35 mm	20
$\mathbf{1 0 4 7 8 8 2 2}$	356467	35 mm	100
$\mathbf{1 0 0 0 3 8 6 0}$	354468	60 mm	20
$\mathbf{1 0 2 0 4 2 8 1}$	356468	60 mm	100
$\mathbf{1 0 1 4 5 2 9 0}$	354469	100 mm	10
$\mathbf{1 0 6 3 2 1 2 2}$	356469	100 mm	40
$\mathbf{1 0 3 0 7 4 3 2}$	354550	150 mm	5
Coverslips			
$\mathbf{1 0 7 2 7 9 1 1}$	354086	12 mm round	
$\mathbf{1 0 3 7 7 0 3 2}$	354077	35 mm Coverslip-bottom dishes	20

CORNING

Corning PureCoat ${ }^{T M}$ amine cultureware

Ultra-low attachment surfaces feature a covalently bound hydrogel layer that effectively inhibits cellular attachment

- Surface minimises protein absorption, enzyme activation and cellular activation
- Surface is noncytotoxic, biologically inert and nondegradable
- Sterilised by gamma irradiation

Cat. No	Alt. No	Description	Pack qty
Culture dishes			
$\mathbf{1 0 0 1 0 5 8 2}$	3261	60 mm	20
$\mathbf{1 0 0 0 0 7 6 2}$	3262	100 mm	20

CORNING

For some applications, the use of a combination of ECM proteins, such as Laminin (LM) and attachment factors such as Poly-D-Lysine (PDL) has been shown superior to the use of either alone

BioCoat™ PDL/LM cellware is suitable for culturing many different types of Peripheral Nervous System (PNS) and Central Nervous System (CNS) networks and is useful for promoting neural cell attachment and differentiation

BioCoat ${ }^{\text {TM }}$ Poly-D-Lysine/Laminin cellware

Cat. No	Alt. No	Description	Pack qty
Multiwell and assay plates			
$\mathbf{1 0 5 9 4 8 4 1}$	354595	6 well	5
$\mathbf{1 0 6 3 2 8 9 2}$	354619	24 well	5
$\mathbf{1 0 0 2 0 8 4 1}$	354596	96 well	5
Culture dishes			
$\mathbf{1 0 1 5 2 3 2 1}$	354455	100 mm	10
Coverslips			
$\mathbf{1 0 4 6 8 6 8 1}$	354087	12 mm round No.1 German glass	80
Flasks			
$\mathbf{1 0 6 6 9 4 6 2}$	354687	2 well	12
$\mathbf{1 0 6 2 9 8 4 2}$	354688	8 well	12

BioCoat ${ }^{T M}$ variety pack cellware

BioCoat ${ }^{\text {TM }}$ Variety Packs each contain 6 well multiwell plates or culture slides with a selection of different extracellular matrix proteins and attachment factors.
Applications:

- Determination of optimal substrate for growth or differentiation of particular cell types
- Studies of effects of various ECM components on cell behaviour
- Cell adhesion assays

Multiwell plates			
Cat. No	Alt. No	Description	Pack qty
$\mathbf{1 0 5 8 6 5 7 1}$	354417	6 well includes: Collagen I, Fibronectin, Laminin, Poly-D-Lysine plates	5
$\mathbf{1 0 3 3 5 6 3 1}$	354431	6 well includes: Collagen I, Collagen IV, Fibronectin, Laminin and Poly-D-Lysine plates	5
Culture slides	354656	8 well includes: Collagen I, Fibronectin, Poly-D-Lysine culture slides	12
$\mathbf{1 0 4 9 8 8 4 2}$			

Thermo
SCIENTIFIC

Thermo Scientific ${ }^{\text {TM }}$ Nunc cell culture imaging products

The microscope is essential when wanting to study cells and understand the function of cells. To make life easier for the scientist, numerous cell culture products with optical surfaces have been created as an alternative to using or transferring specimens onto microscope slides.

- The Nunc glass bottom dish combines the convenience of a standard 35 mm cell culture dish with the imaging benefits of coverglass to provide the optimum optical characteristics required for high magnification microscopy and confocal image analysis
- Thermo Scientific ${ }^{\top M}$ Nunc ${ }^{\top M}$ Lab-Tek ${ }^{\top M}$ Permanox ${ }^{\top M}$ Chamber Slides: ThermoScientific ${ }^{\top M}$ Nunclon ${ }^{\top M}$ Delta treated surface allows attachment of adherent cells and a consistent surface for growth from chamber slide to cell factory
- Lab-Tek II CC2 glass chamber slides: chemically modified glass provides a growth surface with a positive charge that mimics Poly-D-Lysine and aids in the attachment of fastidious cells
- Thermo Scientific Nunc 96 and 384 -well optical bottom plates are ideal for microscopic applications. Black microplates are recommended for fluorescence measurements, with minimum back-scattered light and background fluorescence. White plates are best for luminescence measurements, with maximum reflection and minimal autoluminescence

Cat. No	Alt. No	Description	Pack qty
Multiwell plates			
10281092	165305	96F-well, PS, optical bottom polymer base, cell culture treated, sterile with lid, black	30
10158721	165306	96F-well, PS, optical bottom polymer base, cell culture treated, sterie with lid, white	30
10184221	142761	384F-well, PS, optical bottom polymer base, cell culture treated, sterile with Lid, black	30
10060601	142762	384F-well, PS, optical bottom polymer base, cell culture treated, sterile with lid, white	30
10591483	152029	384F-well, PS, optical bottom polymer base, Poly-D-Lysine treated, with lid, black	20
10082192	152041	384F-well, PS, optical bottom polymer base, Collagen I treated, with lid, black	20
Culture dishes			
15183728	150680	Glass based dish, 12mm	20
15235672	150682	Glass based dish, 27 mm	20
Chamber slides			
10549891	177410	1-well, Lab-Tek Permanox	96
10324421	177429	2-well, Lab-Tek Permanox	96
10304471	177437	4-well, Lab-Tek Permanox	96
10098850	177445	8-well, Lab-Tek Permanox	96
10164271	154739	1-well, Lab-Tek \|I CC2	96
13083043	154852	2-well, Lab-Tek II CC2	96
10092371	154917	4-well, Lab-Tek II CC2	96
10564751	154941	8-well, Lab-Tek \|I CC2	96

Visit our new

Life Science minisite to discover more!
eu.fishersci.com/go/lifescience

Genomics

Proteomics

Cell Biology
Microbiology
© 2015 Thermo Fisher Scientific Inc. All rights reserved
Trademarks used are owned as indicated at www.fishersci.com/trademarks.

Austria: +43(0)800-20 8840 Belgium: +32 (0)56 260260 Denmark: +45 70279920
Germany: +49 (0)2304 9325 Ireland: +353 (0)1 8855854 Italy: +39 0295059478
Finland: +358 (0)9 80276280 France: +33 (0)3 88671414 Netherlands: +31 (0)20 4877000
Norway: +47 22955959 Portugal: +351214253350 Spain: +34 902239303
Sweden: +46 313523200 Switzerland: +41 (0)56 6184111 UK: +44 (0)1509555500

